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AN APPROXIMATE INVERSION METHOD FOR FIVE POINT
DIFFERENCE MATRIX EQUATIONS

R. G. Steinke*
Los Alamos Scientific Laboratory
Energy Division
Los Alamos, New Mexico

An Approximate Inversion Method (AIM) has been developed for
solving two dimensional, five point difference matrix equations. The
method is a variation of the Crout-Cholesky forward elimination and
backward substitution method with operations on submatrix blocks rather
than individual elements. A submatrix collapsing approximation makes
the method efficient; applying familiar element operations on submatrix
blocks makes it simple. Global and line rebalance are used to define
an optimum relaxation parameter to accelerate convergence of the
iterative algorithm.

AIM is compared with the Successive Line OverRelaxation (SLOR) and
Strongly Implicit Procedure (SIP) methods in a numerical study. These
methods were applied to solving the fluid dynamics and neutron
diffusion equations. AIM was found to be 1.3 to 2.5 times faster than
SIP and 1.8 to 5.4 times faster than SLOR. Rebalance relaxation en-
hanced AIM stability over that of the other methods.

*Wlork performed under the auspices of the United States Department of
Energy and the Nuclear Regulatory Commission.



AN APPROXIMATE INVERSION METHOD
FOR FIVE POINT DIFFERENCE MATRIX EQUATIONS

INTROLUCTION

SIMMER, 1 3 best estimate computer program for LMFBR disrupted core
analysis, 1is being developed at the Los Alamos Scientific lLaboratory. Recent
fluid dynamics methods davelopment for SIMMER was concerned with enhancing
numerical stability and reducing calculational effort. One such development
considered the evaluation of the pressure change and material density change
distiributions during a time step. The spatially uncoupled approximate
solution to be iterated was replaced with a correct spatially coupled simul-
taneous solution. This resulted in decreased calculational effort per time
step as well as enhanced stability to allow much larger time steps to he
taken. This improvement was realized by formulating the correct five diago-
nal matrix equations in two dimensional rectilinear geometry and then solving
them with an efficient matrix inversion routine. Initially, the Successive
Line OverRelaxation (SLOR)Z>3 method was used to solve these matrix
equations. Instances of weakly diagonally dominant matrices requiring
hundreds of SLOR iterations to invert them prompted consideration of a more
efficient metnod.

A new Approximate Inversion Method (AIM) was felt to have this effi-
ciency. The method is a variation of the direct Crout-Cholesky forward
elimination and backward substitute method.? Crout-Cholesky method element
operations on a tridiagonal element matrix are applied in AIM as submatrix
block operations on a tridiagonal block matrix. To make the method ef-
ficient, a submatrix collapsing approximation is applied. Making this ap-
proximation requires that the method be iterative. A description of this
iterative algorithm and its approximate matrix inversion tollows.

METHOD
ITERATIVE ALGORITHM

The matrix cquation to be solved is

n-f-=ga (1)
whera
Q is a known five diagonal element i1 reducible M matrix3 with tri-

diagonal submatrix blocks such that M =L + D + u, D 1is a block
diagonal matrix with tridiagonal element” submatrices and L and U
are adjacent lower and upper block diagonal matrices, respectively,
with diagonal element submatrices;



Q is a known vector; and
F is an unknown vector to be determined.

To evaluate the solution, AIM requires an n=0 iteration initial c¢stimate of
F, FO, The error in Q) corresponding to the nth jteration estimate of F is
LO"=Q-M - EN (2)

The change in FM" needed to remove this error can be determined by solving
the matrix equation

M -aF = 4Q" . (3)

— ————
—

An approximate inversion of M, however, gives only an approximate solution,

AFD z (MapproximatE)—l . AQn . (4)
Because AFD is approximate, comblning it with F" defines only the ne<t
iteration estimate of F, i.e., FN* To accelerate convergence of FN*
to F, a diagonal e]ement re]arat1on matrix W is applied to AFP,

£n+1:£n+w.!_\_,:n . (5)

Three definitions of W have been considered:

1. Woo = 1, no relaxation;
2 Woo =W, global rebalance relaxation; and
3.0 wgp = Wy, Tine rebalance relaxation where j =1 + (2-1)/1

and I is the number of nodes in a line.

The w and w; rebalance parameters are defined to minimize the remaining
Euclidean norm error in Q.

n+l n+1)

Error = (AQ" 7, AQ

[+
- 2. Lay™h?

] }T; (1) - vy 20 (6)

whare

A?qn =ﬂ « AFN



Error is m1n1m1zed with respect to w or wj by requiring dError/dw = 0 or
dError/aw; =0 for j=1,2...,d, respectively. The dError/dw = 0 require-
ment can ge solved for w giving

*
Ej A Q) AZQTL

Vo= o3g . (7)
5: Mzdpz

The aError/awj = 0 requirement of J equations gives a five diagonal element
matrix equation with spatial coup]ing to the four nearest node lines. This
mitrix equation is solved for wi, j=1,2,...d, by forward elimination of the
two lower diagonals and backwaré substitution into the two modified uoper
diagonals. Having relaxed Fn+1 by one of the above definitions of w the
iterative evaluation continues until the convergence criterion

Qn+1

(5Q )

, A0
(@, 0

is satisfied for some small ¢.

(8)

MATRIX INVERSION

The block tridiagonal matrix M=L+D+U is inverted by forward eliminating
its lower block d1agona1 L and backward Substituting into its modified upper
block diagonal U The procedure for forward eliminating L involves step-
pina along the J 1 +2,...J-1 node lines and eliminating the (j+1)th node line
submatrix EJ+1' One starts by setting

*

D=0 (9)
and

19y = 07 (10)

for the first node line. Then for each it" node line, starting with j =1,
the tridiagonal element submatrix D is directly inverted by the Crout-
Cholesky forward elimination and backward substitution method. U. becomes

(Q;)'l 'Ej' a full element submatrix, and ﬁg;n becomes
AN x» -1 ny
LS TR { (1)

An e]ementwise collapsing approximation is now made on the full submatrix

(D ) - Uj- Row clements to the left and right of the submatrix

d1agona1 element are ccllapsed (summed) to the adjacent left and right ele-
ments, respectivily,



x /_collapse -1
gj \approximation (Qj) ’ gj ) (12)
*x\ -1
(o})
* Thus far, our purpose has been to corvert the tridiagonal submatrix
D. to an identity submatrix. L 5+1 can now be eliminated from the

* Uj becomes the tridiagonal element submatrix u3.

(J+1)th row submatrix equation by multiplying the modified jth row
submatrix equation by the d1a%ona1 element submatrix L Lj+l and then
subtracting it from the (j+1)'h row equation giving

Djr1 = Qj#1 - Ljs1- Uj  end (13)
Ry &N

At this point, the reason for collapsing (Q*)'l- Us; to the

tridiagonal element subinatrix HJ becomes evxdwnt The f%1d1agona1
element form of Diyq is maintainea dur1ng its modification to Q +1
Without the collapsing appro<1matlon D +] would be a full c]ement
submatrix. Inverting Dj4+1 in the next™ step can now be done efficiently
by the Crout-Cholesky method rather than by a full element submatrix
inversion.

After stepping forward with the above procedure for each j=1,2, ,d-1
line, the solution estimate in the Jth (1ast) node line is determlned by
n *‘1 +n
6Py = (Ry) -aGy - (15)

At this point, L has been eliminated, [ has become the identity matrix 1, and
U has been modified to U™ having tr1d1agona1 element submatrix blocks. ~To
Complete the solution, Backwards substitute into the I+ U* upper triangular
matrix to determine

*N * n .
= ng - UseAFLy for j=J-1,J-2,...,1 . (16)

=] —

The variable storage for AIM is approximately twice that of SLOR. The
original matrix equation must be avod to evaluate Equal1on (2) each iter-
ation. 1In addition, AQ" D and U for j=1,2,...d, and 2 Tine
rebalance matrix equation must be“assigned storage. The 7*I*J storage
locations of the original matrix equatwon expand to 14*I*J + 7*J locations to
evaluate the solution. The fact that D and lJJ for j=1,2,...J are
evaluated and saved in the first iteration eliminates thn need to reevaluate
them in subsequent iterations. Only Equations (11) and (14)-(16) need to be
evaluated in subsequent iterations. This reduces the calculational effort
per iteration by 40%.



Applying AIM with no relaxation on a strongly coupled, weakly diagon-
ally dominant matrix equation can result in a divergent algarithm. Two
examples of this will be discussed in the numerical study section. This
occurs when the approximation of M during its inversion causes it to lose
diagonal dominance. Divergance can be prevented in two ways. The
approximation of M during its inversion can be consirained to maintain
diagonal dominance through further modification. Another way is to use
rebalance relaxation when AIM with no relaxation is found to diverge. This
latter approach is recommended be-ause divergence of AIM with no relaxation
occurs when M is weakly diagonaliy dominant, a situation where rebalance
relaxation would be more efficient. The stablizing effect of rebalance
relaxation has been found to override any instability due to modifying M
during its inversion. - i -

NUMERICAL STUDY
FLUID DYNAMICS

This developmental efiort has resulted in AIM and SLOR being programmed
in the SIMMER-II fluid dynamics algorithm. Their relative efficiency can now
be compared in this convenient framework. The transition phase and work
energy test nroblems in the SIMMER-II manuall were used for this
comparison. Can wall restraint on radial motion was removed in both problems
inorder to have two dimensional spatial coupling. Selecting these problems
was based on their availability and wmall computing requirement. Their
coarse spatial mesh, however, means that both methods converge rapidly.
Problems with stronger spatial coupling would be of interest. A comparison
for such a problem will also be given.

The number of iterations and calculation times of AIM and SLOR were
monitored when evaluating the two test problems. SLOR required four times as
many iterations and twice the calculational effort of AIM with no relaxation
to solve the prassure change matrix equation. Equal computation times were
required for the material density matrix equations because SLOR converged in
two iterations and AIM converged in one iteration. The SLOR solutions were
evaluated by beginning with no relaxation and then updating the relaxation
parameter every five iterations based on the last iteration error ratio.
Applyina global and line rebalance relaxation in AIM increased calculational
effort per iteration by 20% and 30%, respectively. For these small test
problems, AIi1 with no rebalance relaxation was more efficient. However, for
large problems with strong spatial coupling, the rebalance options would
become more efficient. This occurs when their ability to enhance convergence
and reduce the number of jterations overcomes their additional calculational
effort per ilaration.

An example of how effective rebalance relaxation can be was obtained
from a realistic 16 by 31 mesh transition phase analysis prob]em4 run on
SIMMER-II. Liquid fuel was in the process of entering the conlant channel
with large local FCI pressure spikes occurring. The SIMMER-II run aborted
when the pressure change solution evaluated by AIM with no relaxation di-
verged. This was caused by the loss of diagonal dominance through modifying
M during its inversion. Restarting SIMMER-II using the SLOR method resulted
in several hundred iterations to obtain a converyed solution. Restarting
SIMMER-II using the AIM method with global rebalance relaxation, however,

required fewer than ten iterations to converge the pressure change solution.



NEUTRON DIFFUSION

It became of interest, after finding AIM to be faster than SLOR for the
fluid dynamics equations, to compare AIM with the Strongly Implicit Procedure
(S1P) method.> The exigtence of a few group, two dimensional neutron dif-
fusion equation program® employ.ng the SIP method provided a convenient
framework for such a comparison. Making the comparison involved replacing
the SIP method subroutine in the diffusion program with the AIM and SLOR sub-
routires from SIMMER-II. The two energy group IAEA LWR benchmark problem/
and the four energy group SNR-300 LMFBR benchmark problem8 were then evalu-
ated by the diffusion equation program using each method. The LWR quarter
core configuration was evaluated with a 44 by 44 mesh having a 4 cm mash
size. The LMFBR quarter ccre configuration wus evaluated with a 34 by 34
mesh having a 2.7 cm mesh size. The methods were compared during outer
iteration 3 inorder to reduce the effect of the initial few group flux guess.

The convergence behavior of each method in each energy group of the LWR
problem 1is shown in Figures 1-2. Several SIP solutions with different
acceleration parameter values are shown. The optimally accelerated SIP
solution can be seen among them. The SLOR solution was evaluated with relax-
ation parameter updates every five iterations. AIM with no relaxation was
found to be the fastest method for this problem. For practical error re-
duction levels of two to six decades, AIM was faster than SIP by factors of
1.3 to 1.6 and faster than SLOR by factors of 1.8 to 3.0. In a comparison of
calzulational effort per iteration to that of AIM with no relaxation, SLOR
required 41% less, SIP required 22% more, AIM with global rebalance required
32% more, nd AIM with line rebalance required 30% more. The comparison nf
AIM and SLOR in this problem is similar t.. what was observed in the fluid
dynamics test problems.

The convergence behavior of each method in ecach energy group of the
LMFBR problem is shown in Figures 3-6. Calculations similar to those in the
LWR problem were performed. Because of stronger spatial coupling in this
problem, the convergence rate of AIM with no relaxation deteriorated relative
to the other methods. The possibility for divergence, spoken of earlier, is
seen to occur in enerqgy aoroup 2. HNote, however, that during the first few
iterations AIM with no relaxation converged as fast as the best method, AIM
with global or line rebalance relaxation. For practical error reduction
levels of two to six decades, AIM with rzbalance relaxation was found to be
faster than optimum SIP by factors of 1.4 to 2.5 and faster than SLOR by
factors of 3.0 to 5.4. [n a comparison of calculational effort per iteration
to that of AIM with no relaxatiun, SLOR required 44% less, SIP required 31%
more, AIM with global rebalance required 29% more, and AIM with line
rebalance required 35% more.

Tt should be mentioned that SIP exnerienced several instances of con-
vergence to error reduction levels of 10~3 to 10~ followed by subsequent
osciilation about that level. This occurred in nuter iterations 1 and 2 for
acceleration parameters greater than 0.9, For these same acceleration par am-
eter values, an oscillating convergence rate can be seen in Figures 5-6 for
energy groups 3 and 4 in outer iteration 3.



CONCLUSTONS

A new Approximate Inversion Method (AIM) has been developed for solving
two dimensional, five point difference matrix equations. Familiar Crout-
Cholesky method element operations applied to submatrix blocks makes the
method simple. A submatrix collapsing approximation and iterative
acceleration by rebalance relaxation make the method efficient.

A numerical study comparing AIM to tha Successive Line OverRelaxation
(SLOR) and Strongly Implicit Procedure (SIP) methods has shown AIM to be su-
perior. This comparison was made by solving the fluid dynamics and neutron
diffusion equations. AIM with no relaxation acceleration was fastest for
problems with weak spatial coupling. On the other hand, AIM with global or
line rebalance relaxation was fastest for problems with strong spatial
coupling. The best strategy for AIM appears to be the use of no relaxation
during the initial iterations and then switching to rebalance relaxation when
the convergence r.te with no relaxation starts to deteriorate.

The efficiency of SIP could be improved to the level of AIM for problems
with strong spatial coupling by applying global or line rebalance relaxation
in SIP. To achieve this levei of efficiency, however, requires that a guud
estimate for the SIP acceleration parameter be known apriori. Too large a
value causes oscillations; too small a value slows convergence. Not having to
select such an acceleration parameter makes AIM a more attractive method.
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Figure 1.

Error Versus Time for the LWR Problem, Energy Group 1
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Figure 3.

Error Versus Time for the LMFBR Problem, Ene 3y Group 1
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Figure 5. Error Versus Time for the LMFBR Problem, Energy Group 3
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